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The grand canonical ensemble techniques—both Monte Carlo and molecular
dynamics—have become very popular in recent years, but no direct link between
the number fluctuation results from these simulation methods and a Kirkwood–Buff
theory has been established. In this article we look at Kirkwood–Buff integrals com-
puted using thermodynamic averages derived from grand canonical ensemble molec-
ular dynamics simulations and compare them to similar quantities derived from the
dielectrically consistent reference interaction site model many-body theory. These
calculations will be carried out for three different water models, SPC, SPC/E, and
TIP3P. c© 1999 Academic Press

1. INTRODUCTION

Improvements and development of experimental techniques that are used in the study of
solutions have created a wealth of information. However, computational techniques have
lagged behind, and this has resulted in a void in the fundamental link between the macro-
scopic observables and the microscopic details. Recently, computational models, such as
those based on the grand canonical ensemble [1–7], have begun to bridge this gap. In-
tegral equation theories based on the reference interaction–site model (RISM) theory [8]
and which have well-known approximations [9] have been further developed to enable the
study of liquid mixtures [10–13]. Integral equation methods based on angular expansion
methods have also been applied to liquid mixtures [14–16]. One area of success for the
integral equation methods has been in combination with the Kirkwood–Buff theory [14,
17–20]. Kirkwood–Buff theory is a rigorous statistical mechanical theory that provides
a route to thermodynamic properties from microscopic properties. This well-known the-
ory uses fluctuations in the grand canonical concentration to create this tie through the
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136 LYNCH, PERKYNS, AND PETTITT

Kirkwood–Buff integral,Gi j , which has been defined as

Gi j ≡
∫ ∞

0
(gi j − 1)4πr 2 dr,

wheregi j is the radial distribution function for particlesi and j . These integrals, related to
number fluctuations, have been used in a variety of contexts to provide a method of evaluat-
ing thermodynamic potentials, especially free energies and chemical potentials. However,
the direct implementation of these formulae with simulation distributions is unstable for
many reasons. Yet this relationship has been successfully applied to a number of mixtures
with integral equation methods [14–16, 21]; recently NPT simulations in conjunction with
Kirkwood–Buff theory have been applied to an argon–krypton mixture [22]. In this paper we
use grand canonical ensemble molecular dynamics (GCMD) simulations to determine the
Kirkwood–Buff integrals for three water models, SPC [23], SPC/E [24], and TIP3P [25],
and compare these results to those determined by the dielectrically consistent reference
interaction site model (DRISM). This will provide a test of the grand canonical ensemble
molecular dynamics simulation’s ability to predict thermodynamic quantities from micro-
scopic details.

In Section 2 we will describe the grand canonical ensemble simulation method and in
Section 3 we will derive the thermodynamic averages needed to determine the Kirkwood–
Buff integral. In Section 4 we will present the details of the calculations and the comparison.
Finally, in Section 5 the conclusions will be presented.

2. GRAND CANONICAL ENSEMBLE

The Lagrangian [7], in virtual variable space, for the homogeneous grand canonical
ensemble water simulation may be written as

LµV T =
N∑

i=1

n∑
α=1

miαs2

2
q̇2

iα −U N
intra(q)−U N N

inter(q)+
n∑
α=1

meαs2

2
q̇2

eα −Ue
intra(q)

− (ν − N)UeN
inter(q)+

Q

2
ṡ2− ( f + 1)kBT ln(s)+ W

2
ν̇2+ νµex+ (N + 1)µ0

+ (ν − N)(N + 1)kBT ln(N + 1)+ [1− (ν − N)]NkBT ln(N), (1)

whereq and p are the generalized coordinates and momenta,N is the number of water
molecules,n is the number of atoms in each water molecule, i.e.,n= 3, ande is used to
distinguish the extra water molecule in the system. The intermolecular potential energy
between the extra water molecule and the other water molecules in the simulation box is
scaled. This scaling represents the degree of inclusion or exclusion of this water molecule
into the system. This creates a binary system composed ofN water molecules that are
indistinguishable and one extra distinguishable water molecule that is screened from the
N water molecules with a degree of screening that is controlled by the fractional part of
the number extension variableν. The number extension variable couples the system to the
particle bath, and the temperature extension variable,s, couples it to the temperature bath.
The variableN, which represents the number of water molecules in the physical system,
is the integer part of the continuous number variableν. The fractional part of the number
extension variableξ , which is defined as(ν− N), represents the extent of the coupling of the
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extra water molecule to the otherN waters. Whenξ approaches 1 from below, the extra water
molecule is fully incorporated into the system and becomes indistinguishable, the number
of waters in the physical system changes fromN to N+ 1, and a new distinguishable extra
water is inserted into the system; the total interaction potential energy of this new particle
with the(N+ 1) other particles is scaled. Whenξ approaches 0 from above, the extra water
is completely uncoupled from the system and removed. The number of waters in the physical
system decreases by 1 to(N− 1), and theNth water molecule of the physical system is
converted to the new distinguishable extra particle. The interaction potential energy between
this extra water and the(N− 1) other waters in the simulation box is scaled. The number
extension variable behaves in a manner that is similar to the Born coupling term [26].

The first three terms on the right-hand side of Eq. (1) are the kinetic energy, the intramolec-
ular potential energy, and the intermolecular potential energy for theN water molecules that
make up the physical system. The next three terms are similar but are for the extra particle;
the last of these is the intermolecular potential energy between the extra water and the other
N waters in the system. This is the term that is scaled by the number extension variable.
The next two terms are the kinetic and potential energy terms for the temperature extension
variable. The potential energy for this variable is written as a function of the number of
degrees of freedom,f , of all of the water molecules in the system.

The last five terms are the kinetic and potential energy terms for the number extension
variable. The potential energy for this extended variable is written in terms of the excess and
ideal chemical potentials. The criteria used to separate the chemical potential is as follows.
The excess chemical potential,µex, originates from the intermolecular interactions only. The
ideal chemical potential,µ0, comes from the kinetic and intramolecular potential energies.
Because of this separation the ideal chemical potential is the same for all the particles in
the system, i.e., for theN waters plus the extra water. This term does not include the factor
that comes from the indistinguishability of theN waters nor the assimilation/dissimulation
contribution of the extra water. Both these terms are accounted for in the last two terms in
the potential of the number extension variable.

The equations of motion are derived from Lagrange’s equation. For each atom of each
water molecule there will be three equivalent equations for each of the three Cartesian
coordinates. The equations of motion are

miαs2q̈iα =
[
−∂U

N
intra

∂qiα
− ∂U

N N
inter

∂qiα
− (ν − N)

∂UeN
inter

∂qiα

]
− 2miαsṡq̇iα, (2)

meαs2q̈eα =
[
−∂U

e
intra

∂qeα
− (ν − N)

∂Uen
inter

∂qeα

]
− 2meαsṡq̇eα, (3)

Qs̈ =
N∑
i

n∑
α=1

miαsq̇2
iα +

n∑
α=1

meαsq̇2
eα − ( f + 1)

kBT

s
,

(4)

and

Wν̈ = −UeN
inter+ µex+ (N + 1)kBT ln(N + 1)− NkBT ln(N). (5)

These equations provide a set of coupled ordinary differential equations that can be solved
numerically. A similar derivation can be carried out in which the kinetic energy of the extra
particle is also scaled [7].
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This generalization of the potential term for the number extension variable has several
advantages. First, it dynamically incorporates the ideal gas contribution to the chemical
potential for both distinguishable and indistinguishable particles in the simulation box,
and it gives the correct ideal gas limit for the system. The second advantage is that it
approaches the correct values in the limits near the extremum values of the fractional
part of the number variable,(ν− N); this will be considered in detail next. The extended
Hamiltonian for the water grand canonical ensemble, with this definition ofUν , is equal
to

H =
N∑

i=1

n∑
α=1

p2
iα

2miαs2
+U N

intra+U N N
inter+

n∑
α=1

p2
eα

2meαs2
+Ue

intra+ (ν − N)UeN
inter

+ p2
s

2Q
+ ( f + 1)kBT ln(s)+ p2

ν

2W
− νµex− (N + 1)µ0

− (ν − N)(N + 1)kBT ln(N + 1)− [1− (ν − N)]NkBT ln(N). (6)

The fractional part of the number variable,(ν− N), is defined on the interval [0, 1]. On
the right-hand side of this interval, the value of the extended system Hamiltonian when
the number variable approaches unity from below, i.e., in the limit as(ν− N) goes to 1,
is

lim
(ν−N)→1

H =
N∑

i=1

n∑
α=1

p2
iα

2miαs2
+U N

intra+U N N
inter+

n∑
α=1

p2
eα

2meαs2
+Ue

intra+UeN
inter

+ p2
s

2Q
+ ( f + 1)kBT ln(s)+ p2

ν

2W
− (N + 1)µex

− (N + 1)µ0− (N + 1)kBT ln(N + 1)

=
N+1∑
i=1

n∑
α=1

p2
iα

2miαs2
+U N+1

intra +U N+1,N+1
inter + p2

s

2Q
+ ( f + 1)kBT ln(s)

+ p2
ν

2W
− (N + 1)

[
µex+ µ0+ kBT ln(N + 1)

]
,

which is the Hamiltonian for a system of(N+ 1) indistinguishable water molecules. At the
other extremum,(ν− N)= 0, we have

lim
(ν−N)→0

H =
N∑

i=1

n∑
α=1

p2
iα

2miαs2
+U N

intra+U N N
inter+

n∑
α=1

p2
eα

2meαs2
+Ue

intra+
p2

s

2Q

+ ( f + 1)kBT ln(s)+ p2
ν

2W
− Nµex− (N + 1)µ0− NkBT ln(N)

=
N∑

i=1

n∑
α=1

p2
iα

2miαs2
+U N

intra+U N N
inter+

n∑
α=1

p2
eα

2meαs2
+Ue

intra+
p2

s

2Q

+ ( f + 1)kBT ln(s)+ p2
ν

2W
− N

[
µex+ µ0+ kBT ln(N)

]− µ0.
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This is the Hamiltonian for a non-interacting binary system ofN indistinguishable water
molecules and 1 distinguishable water molecule. Another advantage of this partitioning
is that the contribution to the ideal gas chemical potential from the kinetic energy and the
intramolecular interaction does not affect the equations of motion of the molecular dynamics
simulation.

3. THERMODYNAMIC AVERAGES

In this section we will show that the equations of motion derived from the Lagrangian in
Eq. (1) produce configurations useful in evaluating properties in the classical grand canonical
ensemble. The partition function for this extended system grand canonical ensemble can be
defined as

4 =
∞∑

N=0

h− f

N!

∫
dps

∫
ds
∫

dpξ

∫
dξ
∫

dp
∫

dq δ [H− E],

where the extended Hamiltonian,H, in virtual variable space for a homogeneous system is
defined in Eq. (6), with the number extension term(ν− N) changed toξ .

SubstitutingH into the equation for4,

4 =
∞∑

N=0

h− f

N!

∫
dps

∫
ds
∫

dpξ

∫
dξ
∫

dp
∫

dq δ

[
N∑

i=1

n∑
α=1

p2
iα

2miαs2
+U N

intra+U N N
inter

+
n∑
α=1

p2
eα

2meαs2
+Ue

intra+ ξUeN
inter+

p2
ξ

2W
− (N+ ξ)µex− (N+ 1)µ0− ξ(N+ 1)kBT

× ln(N + 1)− (1− ξ)NkBT ln(N)+ p2
s

2Q
+ ( f + 1)kBT ln(s)− E

]
. (7)

First, transform the momentum terms of all the particles

pj

s
= p′j

and separate the Hamiltonian,H, into the sum

H = HN +He+Hξ + p2
s

2Q
+ ( f + 1)kBT ln(s),

whereN represents the particles of the physical system,erepresents the extra particle, andξ
represents the fractional part of the number extension variable. The individual Hamiltonian
terms are defined as

HN =
N∑

i=1

n∑
α=1

p′2iα
2miα

+U N
intra+U N N

inter,

He =
n∑
α=1

p′2eα
2meα

+Ue
intra+ ξUeN

inter,
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Hξ =
p2
ξ

2W
− Nµex− ξµex− (N + 1)µ0− ξ(N + 1)kBT ln(N + 1)

− (1− ξ)NkBT ln(N).

Substituting these definitions into Eq. (7) we obtain

4 =
∞∑

N=0

h− f

N!

∫
dps

∫
ds
∫

dpξ

∫
dξ
∫

dp′
∫

dq

× s( f+1)δ

[
HN +He+Hξ − E + p2

s

2Q
+ ( f + 1)kBT ln(s)

]
. (8)

The integrals over the temperature extension variables,s andps, can be evaluated following
the same scheme proposed by Nos´e [27] and lead to

4 =
∞∑

N=0

h− f

N!

∫
dpξ

∫
dξ
∫

dp′
∫

dq

√
2πQkBT

( f + 1)kBT
exp

(
E

kBT

)

× exp

(−HN

kBT

)
exp

(−He

kBT

)
exp

(−Hξ
kBT

)
.

ExpandingHξ and integrating with respect topξ we obtain

4 =
∞∑

N=0

h− f

N!

∫
dξ
∫

dp′
∫

dq

√
2πQkBT

√
2πWkBT

( f + 1)kBT
exp(βE)

× exp(−βHN) exp(−βHe) exp
[
β
(
Nµex+ ξµex+ (N + 1)µ0

+ ξ(N + 1)kBT ln(N + 1)+ (1− ξ)NkBT ln(N)
)]
. (9)

Next we expandHe andHN and integrate with respect to the momentum terms

4 =
∞∑

N=0

h− f

N!

√
2πQ
√

2πW

( f + 1)
exp(βE)

∫
dξ
∫

dp′
∫

dq

× exp

[
−β
(

N∑
i=1

n∑
α=1

p′2iα
2miα

+U N
intra+U N N

inter

)]

× exp

[
−β
(

n∑
α=1

p′2eα
2meα

+Ue
intra+ ξUeN

inter

)]
exp
[
β
(
Nµex+ ξµex

+ (N + 1)µ0+ ξ(N + 1)kBT ln(N + 1)+ (1− ξ)NkBT ln(N)
)]

Simplifying, we obtain

4 =
∞∑

N=0

3 f

N!

√
2πQ
√

2πW

( f + 1)
exp(βE)

∫
dξ
∫

dq

× exp
[−β(U N

intra+U N N
inter

)]
exp
[−β(Ue

intra+ ξUeN
inter

)]
exp
[
β
(
Nµex+ ξµex

+ (N + 1)µ0+ ξ(N + 1)kBT ln(N + 1)+ (1− ξ)NkBT ln(N)
)]
,

where3 is the deBroglie wavelength.
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How does this partition function reduce for the case of an ideal gas? For an ideal gas the
intermolecular interactions are nonexistent and4 reduces to

4 =
∞∑

N=0

3 f

N!

√
2πQ
√

2πW

( f + 1)
exp(βE)

∫
dξ
∫

dq exp
[−β(U N

intra+Ue
intra

)]
× exp

[
β
(
Nµex+ ξµex+ (N + 1)µ0+ ξ(N + 1)kBT ln(N + 1)

+ (1− ξ)NkBT ln(N)
)]
,

which can be further simplified to

4 =
∞∑

N=0

3 f

N!

√
2πQ
√

2πW

( f + 1)
exp(βE)ZN exp(βNµ)Ze exp(βµ0)

×
∫

dξ exp[ξβ(µex+ (N + 1)kBT ln(N + 1)− NkBT ln(N))],

whereZN andZe are the configurational integrals for theN particles and the extra particle in
the system, andµ is the sum of the excess and ideal chemical potentials for theN particles.
We can perform the integral overξ ,

4 =
∞∑

N=0

3 f

N!

√
2πQ
√

2πW

( f + 1)
exp(βE)ZN exp(βNµ)Ze exp(βµ0)

× exp[β(µex+ (N + 1)kBT ln(N + 1)− NkBT ln(N))] − 1

β[µex+ (N + 1)kBT ln(N + 1)− NkBT ln(N)]
.

This results in a grand canonical partition function that includes multiplicative terms from
the temperature extension variable,Cs,

Cs =
√

2πQ

( f + 1)
,

and the number extension variable and the extra particle,Cξ ,

Cξ =
√

2πW3 fe Ze exp(βµ0)
exp[β(µex+ (N + 1)kBT ln(N + 1)− NkBT ln(N))] − 1

β[µex+ (N + 1)kBT ln(N + 1)− NkBT ln(N)]
.

The variable fe represents the number of degrees of freedom for the extra particle. This
clearly shows that the proposed Lagrangian reproduces a statistical mechanical grand canon-
ical partition function but one that includes the contributions from the extension variables.
Also, fromCξ , it is clear that ifµ0 for the extra particle is written as

µ0 = 1

h fe

∫
dpe

∫
dqe exp

(
−β
[

n∑
α=1

p2
eα

2meαs2
+Ue

intra

])
,

Cξ will reduce to
√

2πW times the excess chemical potential term.
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For the general case we can take the partial derivative of the grand canonical partition
function with respect to the excess chemical potential

∂4

∂µex
=
∞∑

N=0

C0

N!
(βN) exp(Nβ[µex+ kBT ln(N)])

∫
dξ
∫

dq

× exp[ξβ(µex+ (N + 1)kBT ln(N + 1)− NkBT ln(N))]

× exp
(−β[U N

intra+U N N
inter+Ue

intra+ ξUeN
inter

])
+ C0

N!
exp(Nβ[µex+ kBT ln(N)])

∫
dξ
∫

dq

× (βξ) exp[ξβ(µex+ (N + 1)kBT ln(N + 1)− NkBT ln(N))]

× exp
(−β[U N

intra+U N N
inter+Ue

intra+ ξUeN
inter

])
, (10)

whereC0 is defined as

C0 = 3 f exp[β(N + 1)µ0]
√

2πQ
√

2πW exp(βE)

f + 1
.

If we write

ZN,e =
∫

dq exp
(−β[U N

intra+U N N
inter+Ue

intra+ ξUeN
inter

])
, (11)

substitute into the equation for the partial derivative and also divide by4,

1

4

∂4

∂µex
= 1

4

∞∑
N=0

C0

N!
(βN) exp(Nβ[µex+ kBT ln(N)])

∫
dξ
∫

dq

× ZN,e exp[ξβ(µex+ (N + 1)kBT ln(N + 1)− NkBT ln(N))]

+ 1

4

∞∑
N=0

C0

N!
exp(Nβ[µex+ kBT ln(N)])

∫
dξ
∫

dq

× (βξ)ZN,e exp[ξβ(µex+ (N + 1)kBT ln(N + 1)− NkBT ln(N))]. (12)

This is equal to the average value ofN plus the average value ofξ ,

kBT

4

∂4

∂µex
= kBT

∂ ln4

∂µex

= 〈N〉 + 〈ξ〉. (13)

The second derivative of4 with respect toµex leads to the average values

(kBT)2

4

∂24

∂µ2
ex

= 〈N2〉 + 2〈Nξ〉 + 〈ξ2〉. (14)

The average value ofN is directly related the to derivative of4 in the grand canonical
ensemble

〈N〉 = (kBT)

4

∂4

∂µex
(15)
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TABLE 1

Potential Parameters for the Water Models

SPC SPC/E TIP3P

r (OH) (ρA): 1.0 1.0 0.9572
HOH angle (◦): 109.47 109.47 104.52
B× 10−3 (kcalρA12/mol): 629.4 629.4 582.0
A (kcalρA6/mol): 625.5 625.5 595.0
q(O): −0.82 −0.8476 −0.834
q(H): 0.41 0.4238 0.417

but for the GCMD this derivative is related to the sum ofN and ξ . Therefore, in the
determination of the Kirkwood–BuffGii values [18] the extra terms that depend onξ must
be included as

Vρ2
i Gii + Vρi = 〈N2〉 + 2〈Nξ〉 + 〈ξ2〉 − 〈N〉2− 〈ξ〉2, (16)

whereV is the volume of the box andρ is the number density. This equation will be used
to determine the Kirkwood–Buff integral,Gii , from the GCMD simulations for the three
water models.

4. RESULTS AND DISCUSSION

In this section we will present the results of the calculations that were carried out on the
three water models. The systems were equilibrated for 1 ns in the microcanonical (NVE)
ensemble at a fixed initial density of 0.0334 and a temperature of 300 K before starting the
GCMD. The potential parameters used for the different water models are listed in Table 1.
The initial values of the extension variables were set as follows:(ν− N)= 0.5, ν̇= 0.0,
s= 1.0, andṡ= 0.0. The criterion used for picking which of the initial water molecules
should be converted to the first distinguishable water is based on having the initial value
of Wν̈= 0.0; this procedure has been described in detail previously [7]. The equations of
motion were integrated with a 1-fs time step for 500 ps using the modified velocity Verlet
algorithm proposed by Fox and Andersen [28] with periodic boundary conditions imposed.
The Rattle algorithm [29] was used to enforce holonomic constraints of the molecular bonds.
The Lennard–Jones interactions were truncated atL/2, whereL is the box length, and an
Ewald summation method was used to evaluate the electrostatic interactions. Under these
conditions there were, on average, two density changes per picosecond; i.e., there was an
addition and/or a deletion of a water molecule twice for every 1000 time steps.

In Table 2 the predicted Kirkwood–Buff integrals are presented for the grand canon-
ical molecular dynamics simulations for the three water models. These values for the

TABLE 2

Kirkwood–Buff Integrals

Model Gii (GCMD) Gii (DRISM)

SPC −29.92 −27.680± 0.001
SPC/E −29.60 −27.571± 0.001
TIP3P −29.18 −27.500± 0.001
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homogeneous system were determined using Eq. (16). The average values ofN, N2, Nξ ,
ξ , andξ2 were computed from the trajectory data for the last 100 ps of the GCMD simula-
tions. The table also includes values obtained by solving the equations of the DRISM theory
[10, 11]. Statistical mechanical theories such as the DRISM theory use a closed set of non-
linear integral equations which have as their solution a complete set of site–site radial
distribution functions [10, 11]. The solutions to the equation systems are not exact for the
model, and the underlying approximations are usually discussed in the language of cluster
diagrams. The inexactness can be understood in terms of a proportionately small num-
ber of missing and improper diagrams in the virial expansions of the distribution functions
relative to the formally exact expansions [9]. When thermodynamic quantities, such as com-
pressibility, can be calculated from a set of distribution functions using two independent
expressions they usually differ somewhat. The accuracy of an integral equation theory is
often judged by how much such quantities differ [9]. The DRISM theory was developed to
remove the inconsistency between independently calculated values of the dielectric constant
in electrolyte solutions [10, 11]. Where it has been tested, it also improves the consistency
of other thermodynamic quantities over its predecessors, the RISM and XRISM theories
[12]. Once the distribution functions are known over a large range of distances (compared
to simulation) the KirkwoodG’s follow simply via [9]

Gi j = 4π
∫ ∞

0
r 2

i j hi j (ri j ) dr i j , (17)

wherei and j label atom (or site) types. Since the KirkwoodG’s are independent of which
site is chosen on a given molecule there is only one distinct value in a system of pure
water. The difference between values calculated using oxygen–oxygen, oxygen–hydrogen,
and hydrogen–hydrogen distribution functions is a good measure of the convergence of
the solution to the theory for a given model, and in this case they differ only in the fifth
significant figure. As is usually done [12, 13, 30] with integral equation calculations we
add a small Lennard–Jones sphere to the bare charge located at each hydrogen atom in
each of the usual water models. This prevents catastrophic overlap of opposite charges in
statistical mechanical approaches which sample the entire potential surface, while leaving
the calculated structure and thermodynamics unaffected. This modification of the potential
was not carried out for the GCMD simulations. For consistency the same Lennard–Jones
parameters were used for all three models for the hydrogen–hydrogen interaction,εHH=
0.020 kcal/mol andσHH= 0.40ρA. The oxygen–hydrogen interactions were calculated
using the usual mixing rules,εOH=√εHHεOO andσOH= (σHH+ σOO)/2.

The GCMD results are consistently smaller than the DRISM results. The results for the
SPC model are 8% smaller, the SPC/E model results are 7% smaller, and the results for
TIP3P model are 6% smaller. Note that the trend inG with respect to model is the same for
both the integral equations and the simulations. In general integral equations give reasonable
comparisons within a series but are less accurate than simulation.

5. CONCLUSIONS

The unique advantage of simulations in the grand canonical ensemble is the ability to
determine the excess chemical potential directly. From the excess chemical potential, excess
free energies, which are notoriously difficult to obtain from computer simulations, can also
be calculated. The comparison presented shows that the grand canonical molecular dynamics
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simulations are a direct route to the thermodynamic information from a microscopic system.
This opens up a whole new realm of possible problems that can be investigated with this
new technique. Specifically, Kirkwood–Buff thermodynamic estimates of free energies (or
other thermodynamic potentials) as well as their derivatives can thus be evaluated as simple
mechanical quantities in constant chemical potential ensembles. This work opens the way
for consideration of more interesting multicomponent systems where rigorous Kirkwood–
Buff stability criteria have been derived [21].
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